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Abstract

Motion-based aircraft simulators use washout filters to
suppress sustained motion. However, these filters
occasionally produce dynamics requiring assistance from
limiting algorithms to constrain a simulator to electrical
and physical limits. These limiting algorithms should
minimally interfere with “normal simulator operations”
using washout filters, while ensuring that physical and
electrical boundaries are not transcended. In addition, these
algorithms should provide an adjustable relationship
between efficiency during normal operations and comfort
during limiting. Under the assumption that limiting is
implemented using linear, second order filters, all
coefficients may be determined by the selection of a single
normalized parameter per axis, along with the axis’ hard
limits. The relationships that unify washout and limiting
filters are called “Adjustable Limiting Algorithms for
Robust Motion Simulation” (ALARMS). These
algorithms produce a robust interface while establishing
efficiency metrics for motion cues relative to the
maximum capacity of a simulator.

I. Introduction

To control a motion simulator, two distinct regions of
command activity are defined. The “normal region” is
where the aircraft states are emulated by onset cues. This
region (in which washout filters are active) is called the
“region of unrestricted travel excursions,” or ROUTE.
Commands are issued from the mathematical model as
functions of pilot control activity and filters “wash out”
sustained motion while producing onset cues. For each
axis these washout filters are tuned in accordance with the
task, simulator limitations, and physiological
considerations. Washout filters represent an effective
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technology for providing cues to pilots, because
simulators typically have very restrictive hard limits.

The intrusive limiting region is the secondary region of
control activity, where the only concerns are the safety and
comfort of the pilot, and prevention of damage to the
motion system. In this region, algorithms are activated
that ignore pilot commands and aircraft dynamics because
electrical or physical boundaries are threatened. In the
most idyllic of situations in terms of comfort, the pilot
would be unaware that authority had been usurped by
autonomous control functions. But, motion responses are
disassociated from pilot inputs during limiting and
increased pilot comfort requires the dedication of a large
amount of simulator capacity to limiting operations.
Hence, the limiting region should be as small as possible
in conformance with the hard motion limits of a particular
simulator, but large enough to provide sufficient dedicated
capacity for a selected level of pilot comfort during
limiting.

As the washout region is increased, the limiting region is
decreased. The restorative dynamics required by limiting
functions then become larger, and hence more noticeable
by the pilot, when they occur. The system that controls
limiting is called “ALARMS,” an acronym for the title of
this paper.

The most intrusive limiting technique within the capacity
of a motion system is that where constant, maximum
deceleration is applied, beginning at an appropriate
activation point. This technique is called “parabolic
limiting.” Although it permits the greatest possible
ROUTE, it is not acceptable as a general limiting
algorithm because its application invariably terminates a
simulation experiment. The resultant motion cues are well
above pilot perception levels, and are uncomfortable.

As a compromise, the simulation community accepts the
imposition of filtered behavior during limiting, where the
filters are generally linear and second order. Compared to
parabolic limiting, second order filters require the
dedication of more simulator capacity to the limiting
phenomenon, and thus produce less intrusive pilot cues.
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II. Performance Parameter

Motion simulator efficiency relative to limiting has not
been previously quantified. Washout and limiting regions
are here developed as functions of a single normalized
parameter P, which quantifies the aggressiveness of
limiting. It also produces an efficiency metric for each
axis. This is accomplished by defining a “relative volume”
with respect to the maximum capacity of a simulator.
Each axis is treated independently, so this is not the
physical volume1 or “workspace”2,3 of the simulator. The
efficiency metric is the percentage of the maximum
ROUTE that is available, for a given value of the
parameter P, relative to the maximum capacity of the
simulator. It does not quantify how efficiently a washout
filter utilizes the available ROUTE.

All the required coefficients for limiting algorithms are
determined by the selection of the parameter, which
simultaneously establishes both the efficiency of the
motion simulator in utilizing its available real estate for
normal simulator operations and pilot comfort level
during limiting. “Normal simulator operations” are defined
as motion operations (using washout filters) where data
are generated without contamination by false motion cues
due to limiting. The adjustable parameter lies in the range,

0 1≤ ≤P (1)

At the upper limit of this parameter the filters permit
maximum simulator performance under washout filter
control, while reducing pilot comfort when limits are
encountered. At the lower limit the converse is true. The
available range with respect to recovery dynamics is
bounded as follows: For P=1 the simulator can briefly
achieve its hard acceleration limit during a limiting
process. For P=0 the arbitrary level of one-half the
acceleration limit during limiting dynamics is the
maximum that can be achieved.

III. ROUTE as a Volume

For a given simulator axis it is useful to think of the
position-velocity-acceleration product ( uuu˙ ˙̇ ) as a volume,
where “ u” is a generalized translational or rotational axis.
This permits the establishment of a metric for the
efficiency of the motion system in terms of the ROUTE
for each axis of the simulator as compared to its
maximum capacity. NASA’s Vertical Motion Simulator
(VMS) has the largest available range for research into
motion control and limiting procedures, and its motion
may be scaled to investigate limits in simulators with less
capacity. Numerical examples used here for illustrative
purposes are representative the vertical axis ( u z→ ) of the
VMS, where the positive quadrant hard limits selected for

this study are zL = 22 ft , żL = 15 ft / sec , and
˙̇zL = 22 ft / sec2 .

For an arbitrary axis, considering all eight quadrants of
simulator motion in a “volume” with axes ( u u u, ˙, ˙̇ ), the
theoretically maximum ROUTE is 8 u u uL L L

˙ ˙̇  (excursions
may be either positive or negative). This volume is not
attainable because activation of parabolic limiting occurs
on the locus of points given by,

˙ ˙̇u u u uL L
2 2= −( ) (2)

This equation is obtained by assuming that the constant
acceleration limit applies until the simulator comes to rest
at the position limit. For normalization purposes the
maximum available volume must thus be reduced from a
cube to that attainable using the parabolic limiting
algorithm. This represents an approximate 4% decrease.
The “volume” defining the maximum simulator capacity
becomes,

V u u u
u

u up L L L
L

L L

= −






8 1
12

2

˙ ˙̇
˙

˙̇
(3)

This volume is shown in Fig. 1 for the vertical axis,
where the generalized variable “u” becomes “z”. The
indicated velocity-versus-position limitation applies only
during approaches to a hard position limit (where both
velocity and position have the same sign), so the volume
has symmetry. The conditions for the onset of parabolic
responses are independent of the current acceleration,
which upon activation is instantaneously limited ( ±˙̇zL ).

z
..

z 
.

z

Fig. 1 – Parabolic Volume, Vertical Axis

The “constant deceleration at the limit” of parabolic
limiting would be an uncomfortable situation for pilots,
and its onset would produce an undesirable jerk to the
motion system. Parabolic limiting is therefore avoided,
although it establishes the baseline ROUTE from which
the efficiencies of other algorithms are measured. The
relative efficiency of other algorithms can therefore
approach, but never achieve 100%. ALARMS produces
volumes (and hence, efficiencies) that are functions of the
parameter P; less intrusive than parabolic limiting.
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IV. Washout Filters

The translational and rotational inputs to washout filters
are the desired accelerations of the motion simulator, as
developed by the aircraft model in response to pilot inputs
and simulated phenomena, such as atmospheric
disturbances and runway encounters. Besides vehicle
dynamics, these inputs account for scaling, cross
coupling, induced effects, and other special features of a
motion system such as residual tilt. The desired simulator
“high pass” acceleration commands are not discussed here,
but it should be recognized that behavior beyond the
capacity of the motion simulator may be requested, even
when this behavior is “washed out” by second-order filters.
The washout filters may themselves be modified
“continuously according to the aircraft input and simulator
states.”4

For any degree of freedom the input “ ˙̇x ” is applied to a
low pass filter, where the input is a combinatorial
function of aircraft states in response to pilot inputs.
Using a Laplace mathematical form, the motion system
states are computed from,

u s
x s

s a s a
( ) = ( )

+ +
˙̇

2
2 1

(4)

Washout filters suppress sustained motion as well as
provide onset cues, but they occasionally require
assistance in constraining jerk, acceleration, velocity, and
position to prescribed limits. When this occurs, pilot
inputs and the washout filter outputs are ignored.
Therefore, in the limiting region all motion cues are false.

V. Regions

The combination of the ROUTE for normal simulation
operations and the region required for limiting constitutes
the entire available capacity of a motion simulator.
Increasing the size of one region decreases the other. The
limiting region may be quantified and constrained to
adjustable levels because the mathematical description of
limiting dynamics may be controlled by a single
parameter, per axis. In contrast, behavior in the ROUTE
is at the discretion of the researcher, who specifies the
washout coefficients.

The limiting region must be sufficient to constrain all
states to their limits for all “onset” conditions, and do so
with an adjustable level of aggressiveness, independent of
motion system dynamics in the ROUTE. This design
objective defines an envelope of states where the
activation of the limiting algorithms must occur.

The magnitude of possible motion cues during limiting
should range from barely noticeable to intrusive, because
researchers have considerable philosophical differences

about their importance (which also has some dependence
on the task). Whereas one researcher may want to
terminate data-gathering operations when limiting occurs,
another researcher may desire ameliorated motion cues
during limiting such that experimentation is not
interrupted. The intensity of limiting cues should therefore
be adjustable. Correspondingly, if limiting is intrusive a
large ROUTE is available for normal simulation
operations, decreasing the probability that limits will be
encountered. If limiting is adjusted to be not very
noticeable then a smaller ROUTE is available for normal
simulation operations, and the probability of encountering
the limiting phenomenon is greater.

Hard limits are defined for each degree of freedom of a
simulator, here generalized to ( u u u uL L L L, ˙ , ˙̇ , ˙̇˙ ). The
position, velocity and acceleration limits are specified, but
the jerk limit ˙̇u̇L  is computed by unifying the dynamics of
the velocity and position limiting algorithms. The jerk
limit is well defined for position limiting, but unbounded
for either washout filtering or velocity limiting. By
specifying that the maximum jerk cannot exceed that
which occurs during the selected, most aggressive instance
of position limiting, the limiting operations are unified
and become a function of the parameter P.

During limiting operations, limiting motion cues to
small magnitudes requires the dedication of a large amount
of simulator real estate to limiting operations, whereas
large limiting cues do not require as much. Also, limiting
dynamics and washout filter coefficients are independent;
the boundary of the ROUTE determines the dynamics
during limiting. A relationship thus exists where “normal
operations” are more efficient if limiting is intrusive. If
the maximum capacity of a simulator is required for a
particular experiment, then very little real estate is
available for limiting. But, when limiting occurs, it
would be intrusive. If less simulator capacity is tolerable,
then more real estate may be dedicated to limiting. In this
case, when limiting occurs it is less intrusive.

VI. Jerk and Acceleration Limiting

Limits on jerk and acceleration are initially accommodated
using the washout filters themselves, by implementing a
pseudo command technique in which states are re-
computed to deliver all washout outputs that obey the
constraints. Acceleration ( ˙̇u) is clamped to its hard limit
( ˙̇uL ), and the jerk is constrained to its hard limit ( ˙̇u̇L ),
later defined, by adjusting acceleration. For example, the
jerk from a washout filter is approximated in a discrete
model by a difference equation which uses the cycle time
“h” and the current and previous acceleration,

˙̇˙ ˙̇ ˙̇u u u hk k k≈ −( )−1 (5)
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If the approximated jerk is greater than its hard limit “ ˙̇u̇L ”,
it is set equal to the hard limit and the acceleration is
adjusted to reflect this substitution:

˙̇
˙̇ ˙̇˙ sgn ˙̇˙ ˙̇˙ ˙̇˙

˙̇
u

u hu u u u

uk
k L k k L

k

=
+ ( ) >





−1 if 

otherwise
(6)

And if the acceleration is greater than its hard limit, it is
clamped to the hard acceleration limit “ ˙̇uL ”.

˙̇
˙̇ sgn ˙̇ ˙̇ ˙̇

˙̇
u

u u u u

uk
L k k L

k

=
( ) >





if 

otherwise
(7)

If acceleration is modified in this sequence, the position
and velocity states ( u u, ˙ ) are re-computed to conform to
the dynamics of the washout filter.

VII. Position Limiting

If position limiting is activated, a specific second-order
differential equation controls the motion responses. It is
critically damped to avoid position overshoot, has a
constant input of the position limit uL , and its single
coefficient is the natural frequency ω of the limiting
filter, which cannot exceed a maximum value. The natural
frequency is linearly related to the maximum acceleration
that can occur during position limiting, or “recovery,”
such that this relationship establishes the maximum
value. The position-limiting filter is given by,

u s
u x

s
L( ) = ( )
+( )

ω
ω

2

2

sgn ˙̇
 (8)

Limiting must be activated at the pertinent states of a
trajectory. The determination of these states is based upon
predicted performance under the control of the limiting
filters, independent of the origin of the states themselves.

An important step in establishing the proper limiting
trajectories is to select the natural frequency for use in the
position-limiting differential equation.

ω = +( )1
2 1 P

eu

u
L

L

˙̇

˙
(9)

The range of viable frequencies is to a maximum point,
beyond which the “recovery deceleration” could violate its
hard limit ˙̇uL . Arbitrarily, the minimum natural frequency
is selected to be one-half this value. This lower limit may
be adjusted if accrued experience determines that “non-
intrusive” limiting requires a modification. With Equation
(9) defining the natural frequency, during position limiting
the recovery acceleration is limited by,

˙̇ ˙̇u P uL≤ +( )1
2 1 (10)

This is demonstrated in the next two figures. In Fig. 2 the
passive case of P=0 is shown, where the recovery

acceleration achieves half of the maximum deceleration
(11 ft/sec2), as predicted in Equation (10). This only
occurs when the initial velocity is at the limit, however,
because smaller initial velocities produce less aggressive
limiting dynamics. Equally spaced parametric curves are
presented representing the full range of the velocity of
activation.
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Fig. 2 – Recovery Accelerations, P=0

In Fig. 3 the aggressive case of P=1 is shown, where the
recovery acceleration achieves the maximum deceleration
(22 ft/sec2) when the initial velocity is at the limit. This
is given by the bottom dashed line in Fig. 3.
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Fig. 3 – Recovery Accelerations, P=1

These limited dynamics occur because the recovery
acceleration obeys the inequality,

˙̇ ˙u u eL≤ −ω 1 (11)

Equations (9) through (11) are produced by examining the
extreme state values that will occur under the control of
Equation (8). This is accomplished by activating Equation
(8) at unique states that are themselves computed by
curtailing the maximums to the motion system’s hard
limits.

During the recoveries of Figs. 2 and 3 the velocity versus
position relationships are as shown in Figs. 4 and 5.
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Fig. 4 – States, P=0

Fig. 4 represents the “minimum efficiency” case because
for P=0 the limiting phenomenon restricts the ROUTE
most. (The ROUTE for each example is the region to the
left of the recovery trajectories). In contrast, the case of
P=1 in Fig. 5 represents the “maximum efficiency” case
because the ROUTE is maximum.
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Fig. 5 - States, P=1

Figs. 4 and 5 demonstrate that the function controlling the
onset of position limiting may be adjusted to curtail the
recovery dynamics by use of the parameter P. Velocity
limiting is linked to this process through the maximum
jerk.

The initially null accelerations of Figs. 2 and 3 produce
the velocity versus position trajectories of Figs. 4 and 5.
Note that the ROUTE is smaller for smaller P. At any
initial acceleration the velocity and position at activation
(subscript “zero”) conform to the relationship,

± = + +ω ω ω2 2
0 0 02u u u uL

˙ ˙̇ (12)

This is simply the position limiting differential equation
at its point of activation. As functions of time from
activation the states may be written in closed form:

u t u u u te u u e

u t u u u t e

u t u u u t e

u t

t t

t

t

( ) = − +( ) + +( ) −( )
( ) = + +( )[ ]
( ) = − +( )[ ]
( ) =

− −

−

−

0 0 0 2 0 0

0 0 0

0 0 0

1 1
2 1

ω
ω

ω
ω

ω

ω ω

ω

ω ω

ω

ω

˙̇ ˙ ˙̇ ˙

˙ ˙ ˙̇ ˙

˙̇ ˙̇ ˙̇ ˙

˙̇˙ −− +( ) + +( )[ ] −2 0 0 0 0
˙̇ ˙ ˙̇ ˙u u u u t e tω ω ω ω

(13)

These equations are used to obtain the restriction on
natural frequency, and to define the locus of activation
points for position limiting. Activation states depend
upon maximum and minimum values for these equations,
where both finite-time and asymptotic final value
solutions must be considered.

VIII. Velocity Limiting and Activation

If velocity limiting is active, another second order
differential equation controls the motion responses. It also
has a constant input and a single parameter.

u s
u u

s s

k u u

s s k
L

v

v L

v

( ) = ( )
+( ) = ( )

+( )
˙ sgn ˙ ˙ sgn ˙

τ 1
(14)

This differential equation smoothly constrains velocity to
the hard limit u̇L . As a function of acceleration, velocity
is constrained to approach (not when retreating from) its
hard limit as an exponential function of time from
activation. An exponential decay of velocity in time is
equivalent to a linear decay of acceleration with respect to
velocity, as is diagrammed in Fig. 6.

-˙ ̇ u L

˙ u v

- ˙ u v- ˙ u L

˙ ̇ u L
˙ ̇ u 

˙ u 

˙ u L

Fig. 6 – Acceleration vs. Velocity Limits

From Fig. 6 the time constant and coefficient in Equation
(14) are computed from a velocity breakpoint “ u̇v ”.

τ v v
L v

L

k
u u

u
= = −−1 ˙ ˙

˙̇
(15)

The activation of velocity limiting depends upon a
dummy variable “ψ ,” where,

ψ = +˙̇ ˙u k uv (16)
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The velocity-limiting algorithm must be applied whenever
ψ ≥ k uv L

˙ .

During velocity limiting the jerk is,

˙̇˙ ˙̇
˙̇ ˙̇

˙ ˙
u k u

uu

u uv
L

L v

= − = −
−

(17)

Hence, the maximum value of jerk due to velocity
limiting is a function of the breakpoint velocity u̇v ,

˙̇˙
˙̇

˙ ˙
u

u

u uL
L

L v

=
−

2

(18)

Jerk becomes unbounded as the breakpoint velocity
approaches the hard velocity limit, so a limit must be
placed on this quantity. By equating this limit to the
maximum jerk that can be developed during position
limiting using the parameter P (as well as the maximum
jerk permitted by the washout filters), all the regions are
unified.

During position limiting the jerk is bounded, and given
by,

˙̇˙ ˙ ˙̇u u u= − +( )ω ω 2 (19)

Since acceleration decreases for velocities beyond the
velocity breakpoint (see Fig. 6), the maximum magnitude
of jerk due to position limiting is given by,

˙̇˙ ˙ ˙̇u u uL v L= +( )ω ω 2 (20)

The maximum jerks from both velocity and position
limiting are equated to produce the jerk limit,

˙̇˙ ˙̇
˙ ˙̇

˙
u u

u u

uL L
L L

L

= + + +












ω ω
ω

2

2
1 1

4
(21)

Similarly, the velocity breakpoint is given by,

˙ ˙
˙̇

˙̇˙

˙ ˙̇

˙

˙̇
u u

u

u

u u

u

u
v L

L

L

L L

L

L= − = + +






−

2

2
1 1

4

ω ω
(22)

The conditions for the activation of position limiting are
given below.

IX. Position Limit Activation

The required dummy variables for the determination of
whether the position limiting differential equation should
be activated are,

γ
ω

β
ω ω

= +

= +

u
u

u u

˙

˙ ˙̇
2

(23)

α
γ β γ β

γ β
ω β

γ β
=

+ ≤ ≥

+ −


















> <









u u

u
u u

L

L

 or 

 and 

˙

exp
˙

˙

0

1 0
(24)

The position-limiting algorithm is applied whenever
α ≥ uL . Position limit activation is complicated by the
fact that the velocity versus position envelope is a
function of acceleration. That is, for any acceleration
within the range ( ± ˙̇uL ), the velocity may be displayed
versus the position to determine an “area” of unrestricted
travel excursions. The area is symmetric only for zero
acceleration. For the vertical axis this is presented in Fig.
7. The parabolic limiting boundaries are shown for
reference purposes.
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Fig. 7 – Zero Acceleration Boundaries

At a different acceleration the area is not symmetric. For
positive acceleration, for instance, the boundaries of Fig.
7 (solid lines) are shifted downward, as shown in Fig. 8.
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Fig. 8 – Maximum Acceleration Boundaries

The downward shift occurs until maximum acceleration is
achieved, where the velocity limit decreases to the velocity
breakpoint “ u̇v ”. On the negative side the locus of
boundaries becomes segmented into two sections (the α
function), consisting of both a shifted, straight segment
and a curved segment intersecting zero velocity when the
position is at the negative limit. In the example of Fig. 8



American Institute of Aeronautics and Astronautics

7

the vertical acceleration is at the positive maximum limit.
The parabolic boundaries are again shown for reference
purposes. Also, the zero acceleration boundaries from Fig.
7 are reproduced as dashed lines.

As was shown in Fig. 6, at the velocity breakpoint żv  the
velocity-limiting phenomenon occurs. Since the
acceleration is positive in Fig. 8, the shifted velocity is
limited on the negative side only by the hard limit.
However, both velocity and position are curtailed due to
position limiting, where the curve is shifted downward
acquiring a curved component. For cases where the signs
of both velocity and position are the same (while the sign
of acceleration is opposite) this produces the α  function,
which is required to constrain all variables to their hard
limits. For negative accelerations Fig. 8 would become its
skew symmetric equivalent. This phenomenon produces
volumes with up to 16 sides, representing the ROUTE for
any given axis. Figs. 7 and 8 represented the P=0 case,
which may be expanded to display the complete ROUTE
(the entire acceleration range) by adding the acceleration
dimension as in Fig. 9. Dividing this volume by the
parabolic volume Vp  results in an efficiency of 81.3% for
the P=0 case.

z
..

z 
.

z

P=0

Fig. 9 – Vertical ROUTE, P=0, E=81.3%

When the normalized performance parameter is increased, a
corresponding increase occurs in the ROUTE. Fig. 10
shows the case of P=1, where the efficiency becomes
93.3%.

z
..

z 
.

z

P=1

Fig. 10 – Vertical ROUTE, P=1, E=93.3%

X. Discrete Transition

Because nonlinear boundaries exist between regions, care
must be taken in a discrete implementation to assure a

robust solution. The triangular data hold is used in the
discrete implementation of the washout filters because,
besides the states uk  and u̇k , the acceleration ˙̇uk  must be
computed. This is only an approximation using explicit
algorithms such as the zero-order or first-order data hold
because non-realizable (anticipative) forms for the
acceleration are produced. Because the jerk is also an
approximation, the acceleration must be accurate.

State transition methods are preferred for arbitrary washout
filters, where seven coefficients λ i  are produced for a
second-order system. They may be computed using a
program called XFRSET (description and program listing
available   http://www.simlabs.arc.nasa.gov/  ) developed at
Ames Research Center. This implementation of state-
space software5 is an example of techniques that have been
used by the VMS facility for many years. The difference
equations using the triangular data hold are given by,

uk
uk

uk
uk h

xk h
xk˙ ˙

˙̇ ˙̇












=












−
−













+






+







−

















 −

λ λ
λ λ

λ
λ

λ
λ

λ
λ

4 5

6 7

1

1

1 1

2

2

3

1 1

2
1 (25)

The acceleration is computed by use of the original
differential equation in discrete form.

˙̇ ˙̇ ˙u x a u a uk k k k= − −2 1 (26)

These equations are valid for the triangular data hold
formulation. The state transition method delivers very
efficient code for the computation of position, velocity,
and acceleration. The four constant coefficients are defined,
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Using these coefficients the entire real-time workload for
state transition is given by the two equations,
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The zero order data hold is appropriate for both position
and velocity limit filters because it delivers exact answers
for constant inputs. The discrete solutions for the
position-limiting and velocity-limiting filters are as
shown in Fig. 11. All “ λ ” coefficients may be obtained
from subroutine XFRSET.

Figure 11 displays the limiting algorithms applicable for
any axis of motion. The “pseudo command” technique is
used for a seamless interface between the various blocks.   
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FIG. 11 – ALARMS DISCRETE MODEL

XI. Output Examples

Large amplitude pulse inputs can exercise all the
limiting algorithms. This is especially true when the
washout coefficients are zero, representing a one-to-one
motion configuration. Parametric curves using this
configuration are presented in Fig. 12 with four values
for the performance parameter. When the pulse input
occurs, the washout filter calls for the maximum
acceleration of 22 ft/sec2. This acceleration does not

occur immediately, however, because of the jerk limit,
which impacts trajectories most significantly for low
parameter values. The slope due to jerk limiting is most
significant in Fig. 12(a), where P=0.

The acceleration begins decaying when the velocity-
limiting differential equation is activated. This is a slow
decrease in Fig. 12(a) because P=0, and a rapid decrease
in Fig. 12(d) because P=1. Similarly, when the position
limiting differential equation is active the trajectories are
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affected in accordance with the performance parameter,
as previously shown in Figs. 2 and 3.

-20

-10

0

10

20

St
at

es
 (

fp
s)

43210

(a) P=0

 z

 z
.

 z
..
 

-20

-10

0

10

20

43210

(b) P=1/3

 z

 z
.

 z
..
 

-20

-10

0

10

20

St
at

es
 (

fp
s)

43210
Time (sec)

(c) P=2/3

 z

 z
.

 z
..
  

-20

-10

0

10

20

43210
Time (sec)

(d) P=1

 z

 z
.

 z
..

 

Fig. 12 – Pulse Input

The different trajectories during limiting are due to the
performance parameter, where different values specify
different permitted values of maximum jerk. The jerk
histories for the four examples of Fig. 12 are given in
Fig. 13.
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Fig. 13 – Jerk Histories

As a function of the performance parameter, jerk
achieves its permitted maximum values at the pulse
onset time. The arrow pointers in Fig. 13 (for the cases
of P=0 and P=1) show three subsequent occurrences: (1)
The termination of jerk limiting, where the acceleration
finally achieves its maximum, (2) the onset of velocity
limiting, and (3) the onset of position limiting. The
jerk magnitude is limited in accordance with the value
for P in each case, and the onset of limiting occurs at
different times due to the decision logic.

XII. Improvements

The ALARMS system has been developed in order to:

•  Simplify and quantify the limiting processes, and
make them robust and “fail-safe.”

•  Establish a procedure for researchers and pilots to
select the intensity of dynamics during limiting,
thereby controlling the size of the “region of
unrestricted travel excursions” (ROUTE).

•  Optimize the ROUTE (and hence the efficiency) by
determining the maximum locus of onset states for
each limiting algorithm.

•  Implement “jerk limiting” to minimize wear and
tear on mechanical components as well as pilots.

•  Create autonomous limiting procedures, where
limiting (for each axis) is controlled by the
selection of a single performance parameter.

•  Implement position-limiting procedures for the case
where both the position and velocity have the same
sign, while the acceleration has the opposite sign.

The robust design of the ALARMS system is in
anticipation of cueing algorithms that may further tax
the capacity of a motion system, e.g., “second-order
mass-spring-dashpot operator cascaded with a first-order
lead operator.”6 Increased performance of washout filters
increases the probability of encountering unusual
motion system states.

With respect to the original VMS system, ALARMS
has produced the improvements in efficiencies shown in
Figs. 14 and 15.
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Fig. 14 – Rotation Efficiency
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The ALARMS system was implemented on the VMS
late in 2000. As shown in Figs. 14 and 15 it is capable
of increasing motion system efficiency by up to 30%,
depending on the axis. As defined, this represents a
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corresponding increase in the region of unrestricted
travel excursions (ROUTE) - the region where washout
filters are active, and simulation data are valid.

XIII. Conclusions

The optimal position-limiting filter is critically
damped, with a unique natural frequency specified by the
selection of a performance parameter. The parameter is
directly related to the aggressiveness of motion cues
during limiting, and the size of the “region of
unrestricted travel excursions.” Response magnitudes are
quantified in terms of the maximum jerk that can be
experienced during position limiting. The velocity-
limiting filter is tuned to deliver the same maximum
level of aggressiveness during its limiting procedures,
and this limit is also used for the washout filters. These
unifying restrictions create limiting algorithms and
define metrics for the efficiency of a motion system.
The performance parameter uniformly controls jerk
during limiting up to adjustable maximums, and the
motion system is generally constrained to its hard
limits via trajectories much less aggressive than those
of parabolic limiting.

The normalized parameter and resultant efficiency metric
enable the research community to specify the per-axis
simulator performance in terms of capacity and comfort.
ALARMS constitutes a robust system that quantifies
previously esoteric simulator performance boundaries,
maximizes the available simulator capacity for normal
operations, and assures that simulation experiments are
not aborted by limit violations.

References

1. Advani, S.K. and Mebius, J.E.: “Determination of
the Physical Volume of a Moving-Base
Simulator,” AIAA Modeling and Simulation
Technologies Conference, AIAA-96-3375-CP, July
1996.

2. Advani, S. K., Nahon, M. A., Haeck, N., and
Albronda, J.: “Optimization of Six-Degrees-of-
Freedom Motion Systems for Flight Simulators,”
AIAA Modeling and Simulation Technologies
Conference, AIAA-97-4504, August 1997.

3. Advani, Sunjoo Kan, “The Kinematic Design Of
Flight Simulator Motion-Bases”, Delft University
Press, The Netherlands, 1998.

4. Wu, Weimin, and Cardullo, Frank M.: “Is There
An Optimum Motion Cueing Algorithm?”, AIAA
Modeling and Simulation Technologies
Conference, AIAA-97-3506, August 1997.

5. McFarland, R. E. and Rochkind, A. B., “On
Optimizing Computations for Transition
Matrices”, IEEE Transactions on Automatic
Control, Vol. AC-23, No. 3, June 1978.

6. Telban, Robert J., Cardullo, Frank M., and Guo,
Liwen: “Investigation of Mathematical Models of
Otolith Organs for Human Centered Motion
Cueing Algorithms,” AIAA Modeling and
Simulation Technologies Conference, AIAA-2000-
4291, August 2000.


